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Background

This research was directed at strengthening DARPA’s Prognosis initiative by including new
mathematical methods for managing uncertainty during the design, application, and prediction of
the behavior of structural materials. The research program consisted of three projects carried out by
Yale University, Massachusetts Institute of Technology, and the California Institute of Technology.
These projects were: (1) Yale — Multiscale geometric analysis in high-dimensional spaces; (2) MIT
— Reliable fast parameter estimation and (e.g., process or mission) optimization in the presence
of uncertainty; and (3) MIT/Caltech — Exact bounds and certificates for functional outputs of
solutions of the partial differential equations of continuum mechanics.
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Project 2(b):

Certified Rapid Solution of Parametrized Partial Differential Equations for
Real-Time Applications!

Inveétigator: Anthony T. Patera
Department of Mechanical Engineering
77 Mass. Ave., Room 3-266
Massachusetts Institute of Technology
Cambridge, MA 02139

1 Introduction

Engineering analysis requires the prediction of selected “outputs” s relevant to ultimate com-
ponent and system performance; typical outputs include critical stresses or strains, flowrates or
pressure drops, and various measures of temperature and heat flux. These outputs are functions
of “inputs” u that serve to identify a particular configuration of the component or system; typical
inputs reflect geometry, properties, and boundary conditions and loads.

In many cases, the input-output function is best articulated as a (say) linear functional £ of a
field variable u(u) that is the solution to an input-parametrized partial differential equation (PDE);
typical field variables and associated PDEs include temperature and steady/unsteady conduction,
displacement and equilibrium elasticity/Helmholtz, and velocity and steady incompressible Navier-
Stokes. System behavior is thus described by an input-output relation s(u) = £(u(u)) the evaluation
of which requires solution of the underlying PDE.

Our focus is on “deployed” systems — components or processes in operation in the field —
and associated “Assess-Act” scenarios. In the Assess stage we pursue robust parameter estimation
(inverse) procedures that map measured-observable outputs to (all) possible system-characteristic
and environment-state inputs. In the subsequent Act stage we then pursue adaptive design (op-
timization) procedures that map mission-objective outputs to best control-variable inputs. The
computational requirements on the PDE-induced evaluation p — s are formidable: the response
must be real-time — we must “Assess-Act” immediately; and the outputs must be rigorously cer-
tified — we must “Assess-Act” safely and feasibly [23].

In this picjecty-we=deveiop ammethodstor igal-tilnc’ certitied ‘cValfiation of PDR-Hput:Sutpus
relations; the two ingredients are reduced-basis (RB) approximation [2, 8, 9, 12, 18, 22, 24, 25] and
a posteriori error estimation [18, 21, 27; 34, 35, 36]. We also consider the incorporation of these
methods in the Assess-Act paradigm with particular application to problem areas of interest to
DARPA and GE: in particular, “prognostics” and “accelerated insertion of materials.” In Sections
2-4 we describe the basic methodology for a relatively simple class of problems — linear elliptic
equations; and in Section 5 we apply this technology to a non-destructive-testing example — on-
line crack detection — relevant to ultimate prognostics systems. In Section 6 and Section 7 we
extend the methodology to two classes of problems relevant to accelerated insertion of materials
(and materials processing): in Section 6 we consider the equations of fluid flow; and in Section 7 the
equations of time-dependent heat transfer (e.g., relevant to turbine disk quenching). We note that,
due to the short duration of this project, we have not yet applied the full Assess-Act paradigm to
the models of Sections 6 and 7; however, this will be pursued in future work.

1Based on invited paper submitted to Volume on 2" Sandia Workshop on PDE-Constrained Optimization: Toward
Real-Time and Online PDE-Constrained Optimization.
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2 Abstract Statement: Elliptic Linear Equations

We first consider the “exact” (superscript e) problem: given p € D C RP, we evaluate s®(u) =
£(u®(p)), where u®(y) satisfies the weak form of our p-parametrized PDE, a(u®(u),v; 1) = f(v),
Vv € Xe. Here p and D are the input and (closed) input domain, respectively; u®(u) is our field
variable; X¢ is a Hilbert space with inner product (w,v) and associated norm |Jw|| = /(w, w); and
a(-,-; 1) and f(-), £(-) are X®-continuous bilinear and linear functionals, respectively.

Our interest here is in second-order PDEs, and thus (H3(Q))” € X® C (H*())*; here Q C R4
is our spatial domain, v = 1 for a scalar field variable and v = d for a vector field variable; and
HY(Q) (respectively, H}()) is the usual Hilbert space of derivative square-integrable functions
(respectively, derivative square-integrable functions that vanish on the domain boundary, 62) [28].
The associated inner product (-,-) is a u-independent continuous coercive symmetric bilinear form
over X® that perforce induces an (H!(£2))"-equivalent norm || - ||.

We next introduce X (typically, X C X¢), a reference finite element approximation space of
finite dimension A/. Our reference (or “truth”) finite element approximation u(u) € X is then
defined by a(u(p),v; ) = f(v), Vv € X: u(u) € X is a calculable surrogate for u®(u) upon which
we will build our RB approximation and with respect to which we will evaluate the RB error;
u(p) also serves as the “classical alternative” relative to which we will assess the efficiency of our
approach. We assume that |ju®(u) — u(u)| is suitably small and hence that N is typically very
large: our formulation must be both stable and efficient as N' — oc.

We shall make two crucial hypotheses. The first hypothesis is related to well-posedness, and
is often verified only a posteriori. We assume that the inf-sup parameter, B(p) = infyex supyex
[a(w,v; ) /(lwll|v]))], is strictly positive: B(u) > Bo > 0, V. € D. The second hypothesis is
related primarily to numerical efficiency, and is typically verified a priori. We assume that a is
affine in the parameter u: a(w,v;p) = Z 1 9%(n)ad(w,v), for ¢ =1,...,Q parameter-dependent
functions ©9(p) : D —» R and para.meter—mdependent continuous bilinear forms a?(w,v). The affine
assumption may in fact be relaxed [5].

3 Reduced-Basis Approximation

The reduced-basis (RB) approximation was first introduced in the late 1970s in the context of
nonlinear structural analysis [2, 22] and subsequently abstracted and analyzed (8, 25] and extended
[, 2, 24] to a much larger class of parametrlzed partial differential equations. We first introdure
nested saiipies Sy i iy © D, .. 4, i €0 1IN Nyl 8nd atsotiated fiested “Lagrangian”
RB spaces Wy = span {(n(tn) = w(itn), 1 £ n < N}, 1 < N < Npax. Our RB approximation
is then: given p € D, evaluate sy(u) = L(un(p)), where un(u) satisfies a(un(u),v; ) = f(v),
Vv € Wy. We consider here only Galerkin projection.

In essence, Wy comprises “snapshots” on the parametrically induced manifold M = {u(u)|p €
D} ¢ X. It is clear that M is very low-dimensional; furthermore, it can be shown under our
hypotheses — we consider the equations for the sensitivity derivatives and invoke stability and
continuity — that M is very smooth. We thus anticipate that un(u) — u(p) very rapidly, and
hence that — at least for modest P — we may choose N < A/. Many numerical examples justify this
expectation (see Sections 5, 6, and 7); and, in certain simple cases, exponential convergence can be
proven [19]. We emphasize that the deployed context requires global reduced-basis approximations
that are uniformly (rapidly) convergent over the entire parameter domain D; proper choice of the
parameter samples Sy is thus crucial (see Section 4).

We now represent uy () as un(k) = Yjenuns(#)G, where N = {1,..., N}, and Npay =
{1,..., Nmax}. Our RB output may then be expressed as sn(p) = 3 ;en UnN J(u)Z(C,) where — we
now mvoke our affine assumption — the un (i), 1 < j < N, satisfy the N x N linear algebraic




system

Z { 2 eq(y’)a’q(CJaC‘l)}uNj(u) = f(G)a VieN ’ (1)
jeN qeQ

where Q = {1,...,Q}. (In practice we replace the ¢;, 1 < j < N, with a (-,-)-orthonormalized
system; the algebraic stiffness matrix is then well-conditioned.) It is clear from (1) that we may
pursue an offline-online computational strategy [3, 12, 18, 27] ideally suited to the deployed real-
time context.

In the offline stage — performed once — we first solve for the (;, Vi € Npay; we then form
and store £(G), Vi € Npax, and a9(¢j,G), V (4,5) € N2, Vg € Q. In the online stage —
performed many times, for each new p “in the field” — we first assemble and subsequently invert
the (full) N x N “stiffness” matrix ) .o ©%(1)a?((;, () to obtain the un;(u), 1 < j < N —at
cost O(QN?) 4+ O(N?); we then evaluate the sum 2 jen un j(1)€((5) to obtain sy(k) — at cost
O(N). The online complexity is independent of N, and hence — given that N < N — we shall
realize extremely rapid “deployed” response.

4 A Posteriori Error Estimation
We first “presume” B(u), a (to-be-constructed) positive lower bound for the inf-sup parameter,

« B(p): B(u) > B(p) > Bo > 0, Vu € D. We next introduce the dual norm of the residual:
en(p) = supyex[R(v; )/ ||v|l], where R(v; p) = f(v) — a(un(p),v;p), Vv € X.

We may now define our error estimator, An(p) = en(u)/B(r), and associated effectivity,
nv(w) = [An(e)/llu(e) — un(p)|l). We can then readily demonstrate (27, 36] that

1 <nn(p) <v(w)/Br), Yue€D, VN € Npe, 2)

where v() = sup,e x Supyexla(w, v; 1) /(wll{|v|l)] is our continuity “constant.” The left inequality
states that An(u) is a rigorous upper bound for flu(y) — un(p)|l; the right inequality states that
Apn(p) is a (reasonably) sharp upper bound.

We may also develop bounds for the error in the output; we consider here the special “compli-
ance” case in which £ = f and a is symmetric — more general functiorials £ and nonsymmetric a
reguire adjoint techniques [27]. We first define our output error estimator, A% (k) = %, (k)/ B(w),
whﬁich scales as the square of the dual norm of the residual, ex(y): We can then demonstrate

121, 27, 38) that 1AL el) oo a ) Yo € P, Y N6 Npase # A% { ) s o rigorous upper . .=
1<+ ; 3 PG ECAE AENES IS 4 3 X Ra¥a?] 5 .

bound for |s(u) —sn()]; we may further prove [27] in the coercive case that A (1) /]s(u)—sn ()] <
v(1)/B(p) — A% () is a (reasonably) sharp upper bound.

It remains to develop appropriate constructions and associated offline-online computational
procedures for the efficient calculation of ex(u) and G(i). To begin, we consider the former [18,
21, 27): we invoke duality, our reduced-basis expansion, the affine parametric dependence of a, and
linear superposition to express

(1) = (C,0)+ ¥, X 0 wuna(w{2C, L)+ X ¥ 67 (unw ()L, £1)},
geQneN ¢ eQn’'eN

where C € X and L% € X, Vn € N, Vq € Q satisfy the parameter-independent Poisson(-like)
problems (C,v) = f(v), Vv € X and (L},v) = —a%({n,v), Vv € X.

An efficient offline-online decomposition may now be identified. In the offline stage — performed
only once — we first solve for C and £, Vn € Npay, Vg € Q; we then form and store the associated
parameter-independent inner products (C,C), (C, £1), (ﬁ%,ﬁf{,), Y (n,n') € N2\, V(g,q¢") € Q% In
the online stage — performed many times, for each new value of 1 “in the field” — we simply




evaluate the €%;(11) sum in terms of ©9(y), unn (1), and the precomputed inner products — at cost
O(Q?N?). The online cost is independent of N and — for @ not too large — commensurate with
the online cost to evaluate sy(u).

Finally, we turn to the development of our lower bound B(u) for the inf-sup “constant” B(u).
For s1mphc1ty, we consider here the particular case P = 1, Q = 2, ©'(p) = 1, O%(u) = w
a(w,v; p) = a'(w,v) + pa®(w,v); we further suppose that D is convex. The more dlﬁicult general
case is considered in [21] and illustrated in subsequent sections. As our point of departure, we note
that B(k) = inf,ex v/b(v,v; u)/[[v)|2, where b(w,v; p) = (TFw,T#v), Vw,v € X, and w € X —
THFw € X is defined as (T*w,v) = a(w,v; ), Vv € X.

Next, given any i € D and constant € € ]0,1[, we introduce t(w,v; u; ) = b(w, v; ,u) + (p—

) [a%(w, T“v) + a2(v, TPw)] and DF = {u € D|t(v,v; u;B) > 0}. We may then define 7(u; i) =
infyex Vt(v,v; p; ,u)/||v||2 ¥ u € DF. Our function 7(u; %) enjoys three properties: (i) B(u) >
() > 0, V u € DF; (i) 7(1;T5) is concave in p over the convex domain DF; and (4i) T(u; )
is “tangent” to B(u) at p = @. (To make property (ii) rigorous we must in general consider
non-smooth analysis and also possibly a continuous spectrum as N — 0.)

We can now develop our inf-sup lower bound B :D — R. We first require a sample E; = {f; €
D,..., By € D} and associated set of polytopes Cy = {Py C DF1,...,P; C D/} that satisfy (a) a
“Positivity Condition,” 7(u; ;) 2 € B(@;), Yp € Pj,1 < j < J, and (b) a “Coverage Condition,”
Dcu _1’PJ, we may then define

Blw) = e, epy € B(n;). (3)
(We can also develop piecewise linear approximations, though — as discussed further in Section 5
— our inf-sup lower bound need not be highly accurate.) It is readily demonstrated that B(u) has
the requisite theoretical and computational attributes: S(u) > B(w) > €Bo > 0, V uu € D; the online
complexity p — B(1) depends only (and at most linearly) on J, which in turn depends only on P
and Q and not on N. Properties (3), (i), and (¢ii) permit us to parlay relatively few expensive
(offline) evaluations into a very inexpensive global (online) lower bound.
As an illustrative example we consider the Helmholtz-elasticity crack example of the next section
Cforp = (w? €[25,5.0,z=1. 0 L = 0.2) — the crack location, z, and crack length, L, are fixed, and

only the frequency squared w? s nermlffed | fo yary — and ma.tenal damping cqefﬁcmnf d,,. =0.1.
We find that a sample Ej_3 suffices to satlsfy our P081t1v1ty and Coverage “Conditions for & = 0.4."

We present in Figure 1(a) B(u); 7(u; ;) for p € D#i,1 < j < J; and our lower bound (3). We
note that B(u) is not concave (or convex) or even quasi-concave, and hence 7(u; i) is a necessary
intermediary in the construction of our lower bound.

In conclusion, we can calculate a rigorous and sharp upper bound for |s(u) — sy (u)], A% (1) =
6%, (n)/ ﬁ (i), with online complexity independent of N. These inexpensive error bounds serve most
crucially in the deployed stage — to choose optimal N, to confirm the desired accuracy, to establish
strict feasibility, and to control sub-optimality. However, the bounds may also be gainfully enlisted
in the pre-deployed stage — to construct optimal samples Sy [21, 36]: Given SoP b= p3 [DO
N =2,..., Nmax; p}y = argmax,ezr A%, (11); St = S Uuk; ENDJ; our input sample 2F can
be large since the marginal cost to evaluate A} (1) is small (In contrast to POD economization
procedures [31] we never form the rejected snapshots our inexpensive bound A%/(u) serves as a
(good) surrogate for the actual error.)
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Figure 1: Helmholtz-elasticity example: (a) Plots of B(u); 7(1; ;) for p € DFi,1 < j < J; and
B(p). (b) Crack parameter uncertainty region R.

5 Assess-Act Example: Helmholtz-Elasticity

We apply the RB method here to a Helmholtz-elasticity equation often encountered in solid
mechanics: inverse analyses based on the Helmholtz-elasticity PDE can gainfully serve in non-
destructive evaluation (NDE) procedures for crack characterization [10, 15, 17] and damage assess-
ment [13, 16]. The RB method significantly improves the efficiency of these inverse procedures —
accelerating the many evaluations [14] of the PDE outputs.

We consider a two-dimensional thin plate with a horizontal crack at the (say) interface of two
lamina: the (original) domain 9°(z, L) C R? is defined as [0,2] x [0,1] \ T'g, where I'} = {z; €
[z — L/2,z + L/2],z2 = 1/2} defines the idealized crack. The left surface of the plate is secured;
the top and bottom boundaries are stress-free; and the right boundary is subject to a vertical
oscillatory uniform force of frequency w. We model the plate as plane-stress linear isotropic elastic
with (scaled) density unity, Young’s modulus unity, and Poisson ratio 0.25; the latter determine the
(parameter-independent) constitutive tensor Eyjre. Our input is p = (1), (2)s B(3)) = (w?, 2, L);

our output is the (oscillatory) amplitude of the average vertical displacement on the right edge of ‘

" the plate.

.. The governing opation. e the displacement u0{a®: @) € . X%(u) o thorefore . a2l ). = s
N Y J -

fo(v), Vv € X°(u), where X° (u)isa quadratic finite element truth approximation subspace (of d1- o

mension N = 14,662) of X*(u) = {v € (H(2°(2, L)))? | vlag=0 = 0}; a®(w, v; ) = Jqo(;, 1) Wi.i Eijne
Vg — w?wiv; (v;; denotes dv;/dz; and repeated physical indices imply summation); and f°(v) =
i) ag=2 V2- The crack surface is hence modeled extremely simplistically — as a stress-free boundary.
(No crack-tip element is needed as the output of interest is far from the crack.) The output s°(x)
is given by s°(u) = £(u°()), where £°(v) = f°(v); we are thus “in compliance.” (For the damped
example of Section 4 we suitably complexify our field variable and space and replace E;jxe with
a very simple “hysteretic’ Kelvin model [4] Eijke(1 + v/—1dn); here dp, is a material damping
constant.)

We now map Q°(z, L) via a continuous piecewise-affine transformation to a fixed domain .
This new problem can now be cast precisely in the desired abstract form of Section 2, in which
Q, X, and (w,v) are independent of the parameter u: as required, all parameter dependence now
enters through the bilinear and linear forms. Furthermore, it is readily demonstrated that our
affine assumption applies for Q = 10; the ©7(y) are of the form u’(’;)u’(’g) pfg) for exponents y; = 0
orl,yp=-1,0,0r 1, and y3 = ~1,0, or 1. See [21] for detail of the ©(u), a%(w,v), 1 < ¢ < Q,
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and the “bound conditioner” (,-).

We shall consider two different models. In Model I, relevant to the Assess stage, we consider
the parameter domain D! = [3.2,4.8] x D*L, where D>l = [0.9,1.1] x [0.15,0.25]. Note that D!
does not contain any resonances, and hence ﬁ(p,) is bounded away from zero; however, w? = 3.2
and w? = 4.8 are quite close to corresponding natural frequencies, and hence the problem is
distinctly non-coercive. In Model II, relevant to the Act stage, we consider the parameter domain
DI = [w? = 0] x D*L, where — as in Model I — D*F = (0.9, 1.1] x [0.15,0.25]. Note that Model II
is essentially steady linear elasticity and thus the problem is coercive and relatively easy; we shall
hence focus our attention on Model I.

We first present basic numerical results. For our reduced-basis spaces we pursue the optimal
sampling strategy described in Section 4 for N1, = 32 (Model I) and NI, = 6 (Model II); for our
inf-sup lower bound samples we choose € = 1/5 which yields J! = 84 and JH = 1. We present in
Table 1 AN max,rel, 77N ave, A3 N, max and 7y . 85 & function of N = N for Model I. Here AN maxrel I8
the maximum over Seg; of A N(,u) S UN (u)||max, 7N ave iS the average over Sest of An(p)/ ||u( )—
un ()], A} max,ret 15 the maximum over Eres; of A (14)/18 Ny (1) | max, and 1%, is the average
over Erest of A% (1)/|s(1) —sn(p)|. Here Eest € (D")3*3 is a random parameter sample of size 343,
48 (). = M8, (8N ()] = 20775, 80 [ (1) e = MEXpics, 13N ()] =
0.089966. We observe that the RB approximation converges very rapidly, and that our rigorous
error bounds are in fact quite sharp. The effectivities are not quite O(1) primarily due to the
relatively crude inf-sup lower bound. (Thanks to the rapid convergence of RB approximations,
0(10) effectivities do not significantly (adversely) affect efficiency.)

N | ANmax,rel | IN,ave AsN,max,rel U}sv,ave
10| 6.198-01 | 13.11 | 8.40e-01 | 22.50
15| 5.76E-02 | 13.44 | 4.748-03 | 17.22
20 | 1.585-02 | 13.22 | 4.50E-04 | 15.44
25 | 5.69-03 | 12.57 | 4.47e-05 | 14.50
30 1.32e-03 | 12.47 | 2.95e-06 | 14.27

Table 1: Numerical results for Model 1.

- "Turning now to computatlonal eﬁort (agam tor Mo&e] ﬁ, for N = NT595 and any given fi” o

(say, 4.0,1.0,0.2) — for which the error in the reduced-basis output sy(x) relative to the truth
(approxxmatlon) s(u) is certifiably less than A% () (say, 2.38x10~7) — the Online Time to compute
both sy(u) and A% (k) is less than 1/330 times the Time to directly calculate s(u) = £(u(g))-
Clearly, the savings will be even larger for problems with more complex geometry and solution
structure in particular in three space dimensions. Nevertheless, even for our current very modest
example, the computational economies are very significant.

We now consider an Assess-Act scenario that illustrates the new capabilities enabled by rapid
certified input-output evaluation [1]. We first consider the Assess stage (based on Model I): given
experimental measurements in the form of intervals [s(w?, 2*, L*)(1 — €exp), (w2, 2*, L*)(1 + €exp)],
1 < k < K, we wish to determine a region R € D>’ in which the true but unknown crack
parameters, (2*, L*), must reside. We first introduce s%(n) = sn(p) £ A% (1), and recall that —
thanks to our bound theorem (2) — s() € [sy (k) sf;(1)]. We may then define

R = {(2,L) € D** | [sy(wh, 2, L), % (w}, z, L)) N [s(wf, 2*, L*)
(1 — €exp)s S(WE, 2*, L*)(1 + €exp)] # 0,1 < k < K};
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clearly, we have accommodated both numerical and ezperimental error and uncertainty (within
our model assumptions), and hence (2*,L*) € R. '

In Figure 1(b) we present R for K = 2 and (w? = 3.2, w§ = 4.8) for €exp = 0.5%, 1%, 5%.
(In actual practice, we first find one point in R; we then conduct a binary chop at different
angles to map out the boundary of R.) As expected, as eexp decreases, R shrinks towards the
exact (synthetic) value, z* = 1.05, L* = 0.17. More importantly, for any finite €exp, R rigorously
captures the uncertainty in our assessment of the crack parameters without a priori regularization
hypotheses [7]. The crucial new ingredient is reliable fast evaluations that permit us to conduct
a much more extensive search over parameter space; for a given €exp, R may be generated online
in less than 51 seconds on a Pentium 1.6 GHz laptop. Our search over possible crack parameters
will certainly never be truly exhaustive, and hence there may be small undiscovered “pockets of
possibility” in D*L; however, we have clearly reduced the uncertainty relative to more conventional
approaches. (Of course, our procedure can also only characterize cracks within the specified low-
dimensional parametrization; however, more general null hypotheses can be constructed to detect
model deviation.)

Finally, we consider the Act stage (based on Model II). We presume here that the component
must withstand an in-service steady force (normalized to unity) such that the deflection s(0, z*, L*)
in the “next mission” does not exceed a specified value smax. Of course, in practice, we will not
be privy to (2*,L*). To address this difficulty we first define st = max(; ryer s%(0, z, L), where
s}(O, z,L) = sn(0,z,L) + A%(0,z,L); our corresponding “go/no-go” criterion is then given by
37'2 < Smax- It is readily observed that 37‘2 rigorously accommodates both experimental (crack)
and numerical uncertainty — s(0, z*, L*) < 3}3 — and that the associated go/no-go discriminator
is hence fail-safe. Furthermore, as €cxp tends to zero and NT and N increase, sI}'z will tend to
s(0, z*, L*); indeed, for eexp = 1% and N! = 25, N1l = 6, [sf; — (0, z*, L*)]/|s(0, 2*, L*)| = 4.73E-05.
In summary, in real-time, we can both Assess the current state of the crack and subsequently Act
to ensure the safety (or optimality) of the next “sortie.”

6 Incompressible Navier-Stokes Equations

To illustrate the difficulties that arise in the treatment of nonlinear problems we consider a
particular example [34]: the steady incompressible Navier-Stokes equations — Pr(andtl) = 0 natural
convection in an enclosure [29, 32]. .

e Our {ormuiation ot Section s is stiu” applicable” {cxCept“a is’ no longér ‘bilineaf)i oy = GriE wiam saim i

Grashof number; D = [1.0,1.0E5]; u®(p) = (u$(k), u§()) is the velocity field; Q = [0,4] x [0,1];
Xe = {(H}(Q))2| Vv =0}; (w,v) = [y wijvi; a(w,v) = ao(w,v)+Fa1(w, w,v), where ag(w, v) =
Jo wijvi; and a1 (w, z,v) = — Jo (wizj+w;z;)v; ; are the viscous and convective terms, respectively;
flu; ) = pfo(v) = p Jy (1 — 1z1) vy is the buoyancy contribution; and £(v) = 2 Jp, vi(z)dz2 (for
I'v = {1 = 2,22 € [0.5;1]}) measures the flowrate. (Note that the pressure does not appear
explicitly since we pose the problem over divergence-free velocity fields.)

We next introduce X, a reference finite element approximation space. Our reference (or “truth”)
finite element approximation u(u) € X is then defined by a(u(k),v) = f(v; ), Vv € X. As before,
u(p) is a surrogate for u®() upon which we build our RB approximation, and relative to which we
measure our RB error. Here X is the space (of dimension N = 2,786) of discretely divergence-free
functions associated with a classical Taylor-Hood P — PPy finite element approximation [9]. (For
future reference, we also define X, the full Taylor-Hood velocity space.)

The derivative of a plays a central role: here da(w,v;z) = ao(w,v) + a1(w,z,v) satisfies
a(z + w,v) = a(z,v) + da(w,v; z) + Lai1(w,w,v). It is readily shown [34] that da(w,v;z) <
y(2)lwlllv]] for v(z) = 1 + p?|2|l; here p = V2sup, 5 l[vllzs@)/llvll is 2 Sobolev embedding




constant [33], and ||v]| o) = (fo(wiwi)?/2)}/P. We shall further assume [34] — and verify a poste-
riori — that {u(u) | € D} is a nonsingular (isolated) solution branch: B(u(u)) > Bo >0, Vp € D,
where 3(z) = infyex supyex da(w,v; 2)/||wl|]|v| is the inf-sup parameter relevant to our nonlinear
problem. Numerical simulations [29, 32] demonstrate that the flow smoothly evolves from a single-
cell structure for the lower Gr in D to an inertia-dominated three-cell structure for the higher Gr
in D.

We may directly apply the RB formulation of Section 3 to the incompressible Navier-Stokes
equations [12, 24, 34]. The most significant new issue is (efficient) calculation of the nonlinear
terms. We consider the inner Newton update: given a current iterate Uy (u) = Zn_ TN (i) n,
we must find an increment duy € Wy such that da(fuy,v;un) = R(v;p), Vv € Wy; here
R(v;p) = f(v;p) — a(un(p),v), Vv € X is the residual. The associated algebraic equations are
thus '

N N
3;1 {aO(Cja Ci) + ngl ENn(»u')a'l (Cja Cm Ci)}éuNj

N N '
= ,U:fO(Cq,) - El {GO(Cj,Ci) + % ZlﬁNn(lJ‘)al(Cj)C’n>€i)}ﬂNj(:u')1 VieN,
j= n=

where we recall that f(v; u) = pfo(v) and p = Gr.

We can directly apply the offline-online procedure described in Section 3 for linear problems,
except now we must perform summations both over the affine parameter dependence (rather trivial
here) and over the reduced-basis coefficients (of the current Newton iterate, Zy(u)). In the online
stage — for given new y — at each Newton iteration Ty (p) — dun we first assemble the right-hand
side (residual) — at cost O(N3); we then form and invert the left-hand side (Jacobian) — at cost
O(N3). The complexity of the online stage is independent of N: furthermore, for our quadratic
nonlinearity, there is little increased cost relative to the linear case. Unfortunately, for a pth-order
nonlinearity, the online cost for the residual assembly and Jacobian formation will scale as O(NP*1),
and thus standard Galerkin projections are viable only for p = 2 or at most p = 3 [36]. Fortunately,
for larger p and non-polynomial nonlinearities — and for non-affine parameter dependence [5] —
quite effective collocation-like alternatives are available.

Turning now to a posteriori error estimation, we first “presume” fn(u), a (to-be-constr urted)

positive lower bound for the inf-sup parameter, 6N(,u) ﬁlum(u)) Br(w) > ﬂN(u,) >0,Vpe D o

We next recall the dual norm of the residual, € x (1) = sup,cx R(v; 1)/, and introduce TN(p)
20%en (1) /B3 (1), where p is our L4(Q)- X embedding constant. Finally, we define N*(y) such that
(i) < 1 for N > N*(u); we require N*(1) < Npax, ¥V ¢t € D. (The latter is a condition on Niyax
that reflects both the convergence rate of the RB approximation and the quality of our inf-sup
lower bound.)

We may now define our error estimator: for N > N*(u), An(u) = (ﬂN(u)/p Y(1—+/1 = 7N (1));
note that, as ex(p) — 0, Ay(u) tends to the “linear case” en(u)/Bn(p). Our main result is
then: given any u € D, for all N > N*(u), there exists a unique (truth approximation) solution
u(p) € X in the ball Blun(w),Bn(u)/p?) = {z € X |||z — un()|| < Bn(u)/p*}; furthermore,
lu(u) — un(p)|| < An(u). The proof [34, 35] is a slight specialization of the abstract “Brezzi-
Rappaz-Raviart” result [6, 11]; we can further provide several corollaries related to (i) the well-
posedness of the truth approximation, and (ii) the effectivity of our error bound [34]. (We may
also develop bounds for the output of interest [34].)

The real challenge, is computational: how can we compute en(u), p, and An(u)? (Note that,
armed with these quantities, we can evaluate 7 (1) and hence verify N > N*(u).) The reduced-
basis context is in fact a rare opportunity to render the Brezzi-Rappaz-Raviart theory completely
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quantitative. To begin, we consider £n(u): as for the linear case, we invoke duality, our reduced-
basis expansion, the affine parameter dependence of a (and f), and linear superposition to express

E%«'(l") = ”2(61 C) + n§ unN n(.u) {2“(6': Ln) + % uN n’(u) {21‘(6, an’) + (['m Ln’)

+ Zl un n (1) {2(Ln, Qurmrr) + Z un (1) (Qnnss Q) } 1}
nll_
where (C,v) = f(v), Vv € X, (Ln,v) = —ag((n,v), Vv € X, Vn € N, and (Qnn,v) =
2a1(ny Gy v), Vv € X, V (n, 0/ ) € N?; the latter are again simple (vector) Poisson problems.

We can now readily adapt the offline-online procedure developed in the linear case [34, 35]. In
the online stage — for each new p — we perform the sum (4) in terms of the pre-formed and stored
inner products (for example, (Qnn/, Quin), 1 < n,n’,n",n” < N) and the RB coefficients unn(u),
1 < n < N — at cost O(N%). Although the N* scaling, which arises due to the trilinear term in
the residual, is certainly unpleasant, the error bound is calculated only once: in actual practice, the
additional online cost attributable to the dual norm of the residual is not too large. Unfortunately,
for a pth-order nonlinearity, the online evaluation of x(u) scales as O(N?P), and our approach
is thus viable only for p = 2. Fortunately, for larger p and non-polynomial nonlinearities — and
for non-affine parameter dependence [5] — collocation-like alternatives are available; however, in
general, there will be some loss of rigor.

We next turn to the calculation of p. The critical observation is that p is the supremum of a
“Rayleigh-quotient.” Thus p is related to the smallest multiplier of an associated Euler-Lagrange
nonlinear eigenproblem [33]: ()\ 1/)) € (IR+,X) satisfies (1/),11) = 232 f dejdjjzpzv@, Vv € X, for
||¢|| = 1; the ground state is denoted (Amin,¥min), and p = Ai. In practice, it may be
d1fﬁcuit to 1s01ate the ground state; we thus consider a homotopy procedure.

Towards that end, we first introduce a parametrized generalization of the Euler-Lagrange equa-
tion: given a € [0, 1], (Ma), ¥(@) € (Ry,X) satisfies (1,v) = 222 (a)[af o¥;(a)¥;(e)i(a)vs +
(1-0a)fqii(a)vi], Vv € X, for normalization aflp(@)||is+ (1 — a)llp(e)|l2; = 1; the ground state
is denoted (Amin(@), ¥min(a)), and p = A7} (1). We may now apply standard Newton continuation
methods to proceed from the known ground state at o« = 0 — ()\mm(O) PYmin(0)) is the lowest

.., eigenpair of a S‘Imn]P (verfnr) “Tlan]ar-mn” ]um* pwpnnrnblpm — o, the. g;round state of 1n1—9reqt’

at a = 1; for sufﬁ01ently small increménts in 6, we will remain on “the desired (lowest-energy)
branch. For our particular domain, we find (offline) p = 0.4416; since p is py-independent, no online
computation is required.

Finally, as regards the inf-sup lower bound, Bn (1), we may directly apply appropriate exten-
sions [21, 34] of the procedure developed in Section 5. The nonlinear case does present a new
difficulty: the parameter dependence of the (linearized) operator is now induced by the reduced-
basis solution uy () — in our case, through the a;(w, un(p),v) term — and hence is not known a
priori. Fortunately, since uy(u) — u(u) we may develop a “universal” lower bound for sufficiently
large N; the complications are thus largely practical in nature. (For our particular problem, J = 34
— the sample is relatively small despite the rather large range in Grashof.)

We conclude with a brief discussion of the adaptive sampling procedure introduced in Section
4. In the nonlinear case a similar procedure may be pursued, but with two important differences.
First, as already indicated, By (1) and hence BN(u) will now depend on the reduced-basis solution
upn(u); furthermore, Bn (1) will only be meaningful for larger N. Thus in the sample construction
stage we must replace Sy(u) in An(u) with a simple but relevant surrogate — for example, a
piecewise-constant (over D) approximation to S(u(p)). Second, in the nonlinear context our error
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Gr = 1.0E1 Gr = 8.5F4

N ™ An,rel | TN ™ Anrel | IN
3(120E-2{5.0E-2] 1.0 00 * *
6{112E-2{3.0E~2] 1.0} 2.8E+1 * *
9{44E-3||1.1E-2] 1.0} 52E-1| 1.5E—-4{14.1

12||2.7E-6 || 6.8E~6| 1.0} 5.8E-1 || 1.7E—4]20.5
15 3.0E-7 || 76E~7| 10| 1.9E-2 || 46E—6|17.6

Table 2: Error bounds and effectivities for Gr = 1.0E1 and Gr = 8.5E4.

bound is conditional — a small solution to the error equation is only assured if 7(u) < 1. Thus
the greedy procedure must first select on arg max,czr 7nv(p) — until 7a(p) <1, Vp € 2F — and
only subsequently select on arg max,czr An(p); the resulting sample will ensure rapid convergence
to a certifiably accurate solution.

In Table 2 we present Ap () = An(E)/l|uva(@)l and an(p) = An(w)/
llw(e) —un ()| as a function of N for p = Gr = 1.0E1 (single-roll) and x = Gr = 8.5E4 (three-roll).
The “*” indicates that N < N*(u) — 7w () > 1: no error bound is available. For Gr = 1.0E1, we
find N*(u) = 1, and hence we obtain error bounds for all N; the error bound tends to zero very
rapidly; and the effectivity is O(1) [21, 34]. For Gr = 8.5E4, we find N*(x) = 9, and hence we
obtain error bounds only for rather accurate approximations; however, the error bound still tends
to zero rapidly with N — our samples Slo\}’t are constructed to provide uniform convergence; and the
effectivity is still quite good. It is perhaps surprising that the Brezzi-Rappaz-Raviart theory — not
really designed for quantitative service — indeed yields such sharp results; in fact, as ey (1) — 0,
the cruder bounds — in particular, p — no longer play a role.

Finally, we note that the online cost (on a Pentium® M 1.6GHz processor) to predict sy (1)
and An(u) (and a bound for the error in the output, A% (k) [34]) is typically 10ms and 90ms,
respectively — compared to order minutes for direct finite element calculation of s(u) = £(u(y)).

7 Parabolic Equations
We consider here the extension of the RB methods and associated a posteriori error estimators
described in Sections 1-4 to parabolic PDEs — in particular, the heat equation; we shall “simply”

oL

eab tiine as an addivicdsiy dlbcitEpecials piranitter [30]: *(‘Thefe dre niany bpproackes 6 model -+

reduction for initial-value problems: POD methods [31]; balanced-truncation techniques [20]; and
even reduced-basis approaches [26]). However, in general, these frameworks do not accommodate
parametric variation (or, typically, rigorous a posteriori error estimation).) For simplicity, we
directly consider a K-level time-discrete framework (corresponding to Euler Backward discretization
— we can also readily treat higher-order schemes such as Crank-Nicolson) associated to the time
interval [0,tf]: we define T = {9,...,tK}, where t* = kAt, 0 < k < K, and At = t4/K; for
notational convenience, we also introduce K = {1, ..., K}. (Clearly, our results must be stable as
At — 0, K — 00.)

Given p € D C RP, we evaluate the (here, single) output s(u,t*) = £(u(x,t*)), V k € K, where
u(i, t*) € X, Yk € K, satisfies ’

A mlu(p, 1) — u(u, t771),0) + au(n, 1), v; p) = b(EF) f(v), Vv e X, (5)

with initial condition (say) u(g,t%) = 0. Here u and D are the input and input domain; u(p, %),
Yk € K, is our field variable; X C X is our truth approximation subspace for X¢ (and (:,-),
|- 1) defined in Section 2; a(:, -; ) and m(-,-) are X°-continuous and L?(2)-continuous symmetric
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bilinear forms, respectively; f(-), £(-) are L2(f)-continuous linear forms; and b(t*) is the (here,
single) “control” input at time t*.

We shall make the following assumptions. First, we require that a and m are independent of time
— the system is thus linear time-invariant (LTI). Second, we assume that a and m are coercive:
0 < ap < a(p) = infyex(a(v,v;u)/|[v]?] and 0 < oo < o(k) = infyeran)(m(v,v)/[[vl7z(q))-
Third, we assume that a depends affinely on p: a(w,v;p) = }:qul 0%(u) a?(w,v) forg=1,...,Q
parameter-dependent functions ©9(u) : D — R and parameter-independent continuous bilinear
forms a%(w,v). (For simplicity, we assume that m, f, and £ are parameter-independent.)

To ensure rapid convergence of the reduced-basis output approximation we shall need a dual (or
adjoint) problem which shall evolve backward in time. Invoking the LTI property, we can express
the adjoint for the output at time t£, 1 < L < K, as ¥X(u, t¥) = U(u,tK-L+k) 1 < k < L; here
U(u,tk) € X, Vk € K, satisfies At~Lm(v, O(u, t¥) — U(p, t*1)) + av, ¥(p, tF); ) = 0, Vv € X,
with final condition m(v, ¥ (g, tX*1)) = £(v), Vv € X.

We now introduce the nested samples SR,’W = {@},..., ﬁ?\;p,}v 1 < Npr < Nprmax, and Sj‘v‘;u =
{ad,..., B3} 1 < Nau < Ngu,max, where ji = (,t¥) € D =D x T. Note the samples must now
reside in the parameter-time space D; we also introduce separate (and different) samples for the
primal and dual problems. We then define the associated nested RB spaces Wf\’,; = span{(h =
u(ﬁgr = (I»‘n;tk")pr)) 1<n< Npr}a 1< Npr < Npr,max, and W]%r‘;“ = span{cg“ = "/)(/lgzu =
(pn, t*)8%), 1 < n < Ngu}y 1 < Nay < Ngumax- Note that for the primal basis we choose — as
justified by the LTI hypothesis — an impulse input, b(t¥) = d1x, V k € K.

Our RB approximation is then: given pu € D, evaluate sy(u,t*) = Llun(p, t*))

+ oKy R (Un (, tKRHE); 1,2k At, Vk € K, where (pr) un(p,t*) € Wi, V k € K, satis-
fies At~ m(un(p, 1) — un(p, t*71),0) + a(un(p, 1), v; ) = b(t*) f(v),
Vv e W,‘,’,‘;r, with initial condition un(y,t°) = 0, and (du) Un(p,t*) € Wg,‘;u, Yk € K, sat-
isfies At~ m(v, Un(p,t¥) — Un(p, 1)) + a(v, Un(p, t*);u) = 0, Vv € WRP , with final con-
dition m(v, Un(u, t5*1)) = £(v), Vv € W,‘\lj;‘“. Here, Vk € K, RP*(v;p,tk) = b(tF) f(v) —
(At mun(u, t5) — un(,t*71), v) + a(un(p, tF), v; ), Vo € X, is the primal residual.

The offline-online computational procedure is similar to the elliptic case of Section 3 but with
the added complexity of the dual problem and the time dependence. In the online stage, we first

- sesornble the roquisite RB “stiffncos” matrices - ab gost QN2 b NE A NpNau)Q):. 3re thensolve. . ..

the primal and dual problems — at cost O(Ng, + N3, +K (Ng, + N2))); and finally we evaluate
the RB output approximation sy(u;t*), Vk € K — at cost O(K NprNgy). The online complexity
is thus independent of N, and in fact not too sensitive (for our LTI system) to K.

We now turn to a posteriori error estimation. We stress that the development of the error
bounds is in no way limited to the RB approximation described here: we may consider “any”
stable ODE or PDE system and any reduced-order model. To begin, we assume that we are given
@(p) : D — Ry — a positive lower bound for the coercivity constant, a(p) : a(u) > &(u) = & > 0,
Y € D. In our symmetric case o(u) = B(u) and thus &(u) can be constructed according to Section
4; in fact, thanks to coercivity, much simpler procedures typically suffice [27]. We next recall the
dual norm of the primal and dual residuals: V& € K, 5?\;,,,(“’ t*) = sup,e x[RP" (v; 4, t%)/||v|] and
8t (1 t%) = sup,ex B (v; 1, 1%)/[ol], where V & € K, BY(v; s,t) = —(At~m(v, ¥ ()
— U (i, t*1) + a(v, Un(p, tF); 1)), Vv € X. Finally, we introduce the “spatio-temporal” energy
norm, ||[v(u, t)I? = m(v(p, t5), v(, t%)) + oy AL a(v(p, 1), 0(u, t¥); 1), Vo € X.

We may now define our error estimators: Vk € K, Vpu € D, A?}pr (u,tF) = &‘%(u) (At 22/:1
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Figure 2: One “cell” of the heat shield.

’ 1 ~1 / 1
eh (1, 85)%) % AR (. t¥) = 672 (u) (A SRk (1,t%)?)7; and
A, %) = AT (1, t4) A, (1, tKH4). - ®

We can then readily demonstrate that |[|u(u, t5)—un (s, t*)||] < A’ﬁpr(u, t*) and |s(u, t*) sy (i, tF)|
< As(p, t*), Vk € K,V € D, V Ny € Nprmaxs ¥V Nau € Naumax — we obtain rigorous (and, as we
shall see, rather sharp) upper bounds for the primal error, dual error, and output error. (Note that
our particular form (6) assumes that ¥(u, tK+1) — here, p-independent — is a member of Wg,‘;u;
this requirement is readily relaxed.)

The offline-online procedure for the computation of A%(y, t¥), V k € K — in particular, for the
calculation of the requisite primal and dual residual norms — is similar to the elliptic case of Section
4 but with the added complexity of the dual problem and the time dependence. In particular, in the
online stage — for any given new p — we evaluate the e (1, t*)2 and e (1, t*)2 sums in terms of

09(1), unn(p, t*), Tnm (u,t’“') and the precomputed inner products — at cost O(K (Ng,—l-Ngu)Qz).
Thus, all online calculations are indeed independent of N.

We now turn to a particular numerical example. We consider the design of a heat shield (one
cell of which is shown in Figure 2): the left boundary Qo is exposed to a temperature unity
and Biot number Bioy “source” for ¢ € [0,%5]; the right boundary as well as the top and bottom
(symmetry) boundaries are insulated; and the internal boundaries 0, — corresponding to three

"square coo¥ing channils —=are exposed 40-atemperature zerc and Bint number Bin-“sink.”.0ur e e e

input parameter is hence u = (11, () = (Biout, Biin) € D = [0.01,0.5] x [0.001,0.1]; our output
is the average temperature of the structure — a surrogate for the maximum temperature of the
(to-be-protected) right boundary for ¢ € [0, 00[ - '

The underlying PDE is the heat equation. The (appropriately non-dimensionalized) govern-
ing equation for the temperature u(y, t*) € X is thus (5), where X is a linear finite element
truth approximation subspace (of dimension (exploiting symmetry) N’ = 1,396) of X°® = H HQ);
a(w,v; ) = fo Vw-Votpay fo,  wo+pe) Jo,, wvs m(w,v) = Jowwv; fv;p) = pqy Jo,,, v» Which
is now (affinely) parameter-dependent; b(t*) = 1, Vk € K; and (w,v) = [, Vw-Vv+0.01 Joq, WUt
0.001 f5q, wv — hence we may choose &(p) = 1. The output is given by s(u, t*¥) = £(u(y,t¥)),
where £(v) = |Q]7! [, v. ’

We now present numerical results. Our “optimal” primal and dual samples are constructed
(separately) by procedures similar to the greedy approach described for the elliptic case in Section
4: at each step (say, for the primal) we select the parameter value u* for which A}’\’,rpr (u,tX) is

maximized; we then select the time t** for which efvrpr (p*,t*) is maximized. In Table 3 we present,

3 —_ pr =) 75 APY 3 5 =
as a function of Np;r (= Nau), Amax,rel, 7P, Afhax’rel, and 77°: Amax’rel is the maximum over Erest of
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N pr Alxixrax,rel -ﬁpr Ai’xa.x,rel ﬁs
4111.6E-00|544|1.6 E-00 | 95.63
8 6.3E-02|1.55{6.7E-03 | 30.92

12| 1.0E-02|1.03 |26 E-04 | 8.43

16 || 32E-03 | 1.02 | 1.5 E-05 | 11.45

20 8.8E-04|1.01|11E-06]17.43

Table 3: Convergence results for the heat equation.

A% (1, t5) /||l (s 91|, 7P is the average over Smest X T of AR (11,£%)/lllu(k, t*) —un (1, 9|1l
A% .y 1ol IS the maximum over Erest of AX (1, t5) /lsn(us, t¥)|, and 7 is the average over Srest of
A% (1t (1)) /15 (s, tn (1)) — s (2, (1)) Here Eqest € (D)*® is a random input sample of size 400;
f = ArE MAX,cEpe |||UNmax (16, )|l s = BTEMAXyeE 1y, [SNmax (1,85 (note the output grows
with time), and ¢, (1) = arg max;cey |s(4, th) — sn(u, t%)].

Finally, we note that the calculation of sy(u,t*) and Ay (k, tk), Vk € K, is (say, for Ny =
Nyy = 12) roughly 40x faster than direct calculation of the truth approximation output s(u,t*) =
o(u(p, t*)), Vk € K. We may thus work with sy(u,t*) + A% (u, tk) as a certifiably conservative
(upper bound) and accurate surrogate for the average temperature s(i,t*) in truly interactive
design exercises. '
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Project 3 — Computing Bounds for Functional Output of Solutions of PDE’s

Project 3(a):

Computing Bounds for Functional Output of Solutions of PDE’s

Investigator: Jaime Peraire
Department of Aeronautics and Astronautics
Room 37-451
Massachusetts Institute of Technology
Cambridge, MA 02139

Background: Exact Bounds and Certificates

Existing techniques for approximating the solutions of PDE’s rely on the experience of the user
to estimate a-priori the size of the discretization required to resolve the various problem features.
Failure to appropriately do so, may result in results which are either too expensive to obtain or,
worse yet, uncertain. Modern a-posteriori and mesh adaptivity methods have the potential to
alleviate this problem, but not to eliminate it completely, i.e. a saturation hypothesis needs to be
made that can not be verified a-priori.

For a number of years we have been engaged in the development of techniques for computing
strict bounds for functional outputs of the exact solution of partial differential equations. Our
approach draws on previous work on a-posterior error estimation and complementary energy ideas
well known in the mechanics community. We have generalized the previous work in a number of
ways. Relative to existing a-posteriori error estimation techniques, our approach delivers bounds
with respect to the exact solution of the PDE as opposed to just an estimate of the computed error.
Relative to the complementary energy methods, which are only capable of delivering bounds for
the energy in problems for which a variational principle exists, we are able to handle general linear
outputs, some non-linear outputs, and some non-symmetric problems both linear and non-linear
for which variational principles may not exist. L

. The starting paint for onr hounds procedure.is . finite elernenf aptmoxu}mfmn to the solution

and to the output dependent adjomt solution. These approximations are then post-processed to
yield the so called inter-element hybrid fluxes.” The hybrid fluxes are then used as data for the
computation of locally equilibrated stress fields. The final expression for the bounds is obtained
by calculating appropriate norms of the stress fields. It is shown that the computed bounds are
uniformly valid regardless of the size of the underlying coarse discretization, but as expected, their
sharpness depends on the accuracy of the approximated solutions. A mesh adaptive procedure has
also been developed which can be used to determine the bounds to a preset level of accuracy.

An attractive feature of our approach is that the piecewise polynomial equilibrated stress-like
fields, which are computed as part of the bound process, can be used as certificates to guarantee
the correctness of the computed bounds. It turns out that given a stress field, it is easy to check
whether this field corresponds to a valid certificate, and in the affirmative case, it is straightforward
to determine the value of the output that it can certify. In particular, the stress fields need to satisfy
continuity of normal tractions across elements, and membership of an appropriate space.

The idea of a certificate that is computed simultaneously with the solution has many attractive
features. In particular, a certificate consisting of the data set necessary to describe the piecewise
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polynomial stress-like fields could be used to document the computed results. We note that exer-
cising the certificate does not require access to the code used to compute it, and can be done with
a simple algorithm which does not require solving a system of equations. A very important point
is that, if a certificate meets all the necessary conditions, which in turn are easy to verify, then,
there is no need to certify the code used to compute it. In practice, the size of these certificates
depends on the required level of certainty. As expected, we shall find that high levels of certainty,
i.e. small bound gaps, will often require longer certificates (larger data sets) than those required
to certify less sharp claims.
To date, we have been successful at developing algorithms for computing bounds for:

- Linear Functional Outputs of the Convection-Diffusion-Reaction Equation
- Linear Functional Outputs of the Linear Elasticity Equations
- Energy Release Rates (J-Integral) in Linear Elasticity

- Linear Functional Outputs for the Stokes Equation

1 Particular Achievements

The focus of this project has been the extension of our methodology to the computation of
strict upper and lower bounds for for the collapse load in limit analysis.

Limit analysis is relevant in many practical engineering areas such as the design of mechanical
structures or the analysis of pressurized vessels. Whereas linear elastic analyses are typically used
to determine the performance of the structure (usually characterized by deflections) under the
so called service loads, limit analysis is used to determine the collapse load. Assuming a r